November 15, 2017

Deep Reading Brings New Things to Life (Science)

Here is an interesting Twitter thread from Jacquelyn Gill on 'deep reading':

The basic idea is that exploring older literature can lead to new insights, which in turn lead to new research directions. The new research of our era tends to focus on the most relevant and cutting-edge literature [1]. This recency bias excludes many similarly relevant articles, including articles that perhaps inspired the more recent citations to begin with [2]. 

I have my own list of deep reads that have influenced some of my research in a similar fashion. These references can be either foundational or so-called "sleeping beauties" [3]. Regardless, I am doing my part to maintain connectivity [4] amongst academic citation networks:

1) Woodger, J.H. The Axiomatic Method in Biology. 1937.

An argument for biological rules, an influence on cladistics (developed in the 1960s), and a natural bridge to geometric approaches to data analysis and modeling. While there is a strong argument to be made against the axiomatic approach [5], this directly inspired much of my thinking in the biological modeling area. 

2) Davis R.L., Weintraub H., and Lassar A.B. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51, 987–1000. 1987.

This was the first proof-of-concept for direct cellular reprogramming, and predates the late 2000's Nobel-winning work in stem cells by decades. In this case, a single transcription factor (MyoD) was used to convert a cell from one phenotype to another without a strict regard for function. More generally, this paper helped inspired my thinking in the area of cellular reprogramming to go beyond a biological optimization or algorithmic approach [6].

3) Ashby, W.R. Design for a Brain. 1960.

"Design for a Brain" serves as a stand-in for the entirely of Ashby's bibliography, but this is the best example of how Ashby successfully merged explanations of adaptive behavior [7] with systems models (cybernetics). In fact, Ashby originally coined the phrase "Intelligence Augmentation" [8]. I first discovered Ashby's work while working in the area of Augmented Cognition, and has been more generally useful as inspiration for complex systems thinking.

Not so much a couple of sleeping beauty as easy reading technical reference guides for all things complexity theory.

5) Bourdieu, P. Outline of a Theory of Practice. Cambridge University Press. 1977 AND Alexander, C., Ishikawa, S., and Silverstein, M. A Pattern Language: towns, buildings, construction. Oxford
University Press. 1977.

This is a bonus, not because the references are particularly obscure or even from the same academic field, but because they partially influenced my own view of cultural evolution. This is yet another piece of advice to young researchers: take things that appear to be disparate on their surface and incorporate them into your mental model. If nothing else, you will gain valuable skills in intellectual synthesis.

UPDATE (11/17):
Here is another example of old (classic, not outdated) work influencing new scholarship.

[1] Evans, J.A. (2008). Electronic Publication and the Narrowing of Science and Scholarship. Science, 321(5887), 395-399 AND Scheffer, M. (2014). The forgotten half of scientific thinking. PNAS, 111(17), 6119.

[2] related topics discussed on this blog include distributions of citation ages and most-cited papers.

[3] van Raan, A.F.J. (2004). Sleeping Beauties in Science. Scientometrics, 59(3), 467–472.

[4] Editors (2010). On citing well. Nature Chemical Biology, 6, 79.

[5] For the semantic approach (which had been influential to my more recent work), please see: Lloyd, E.A. (1994). The Structure and Confirmation of Evolutionary Theory. Princeton University Press, Princeton, NJ.

[6] Ronquist, S. (2017). Algorithm for cellular reprogramming. PNAS, 114(45), 11832–11837.

[7] Sterling, P. and Eyer, J. (1988). Allostasis: A new paradigm to explain arousal pathology. In "Handbook of life stress, cognition, and health". Fisher, S. and Reason, J.T. eds. Wiley, New York. 

[8] Ashby, W.R. (1956). An Introduction to Cybernetics. Springer, Berlin.

1 comment: