Another year of the Orthogonal Research and Education Laboratory (2024). We have had a great year! I posted a summary video on YouTube that covers activities related to Saturday Morning NeuroSim, our Open Science/Open-source interest group, the Computational Developmental Systems interest group, the Representational Brains and Phenotypes interest group, and the Cybernetics interest group. I also discuss our educational initiatives and conference/publication activities.
The seminal activity of the lab is the Saturday Morning NeuroSim meeting, which happens on Saturdays at 10AM ET (North America). This is based on the Saturday Morning Physics educational events, which originated in Germany and are popular in Physics departments and US National Labs. We had 45 meetings in 2024, and covered all manner of intersections between computational, neuroscience, social science, molecular biology, and complexity theory.
The Computational Developmental Systems interest group can best be described as Neuro-Devo-Psych. This combines our work on Computational Critical Periods and Computational Developmental Biology (DevoWorm-associated). This also intersects with work in the Representational Brains and Phenotypes interest group and the Developmental Neurosimulation approach.
Our Open Science/Open-source interest group sponsors Google Summer of Code participation in addition to assorted activities in the research practice and open-source project management spheres. The rejuvenation of our Cybernetics interest group features a reading group and other academic activities.
From the “Macy Conference Redux” feature form our July 1 meeting
Over the past three years, the Saturday Morning NeuroSim group has met weekly on Saturdays (mornings in North America). The Saturday Morning format continues in the tradition of Saturday Morning Physics and covers a wide variety of topics.
One recent lecture/discussion thread is on Physical Computation. Our approach to the topic begins with the debate around the role of computation in Cognitive Science and the Neurosciences. And so we begin in Week 1 with a discussion of the connections between computation, information processing, and the brain, largely focusing on the work of Gualtiero Piccinini and Corey Maley. A starting point for this session is their Stanford Encyclopedia of Philosophy article on “Computation in Physical Systems”. Many current assumptions about computation in the brain stem from the Church-Turing thesis, which often leads to a poor fit between model and experiment. Piccinini and Maley propose that the Church-Turing-Deutsch thesis is preferable when talking about systems that perform non-digital computations. Amanda Nelson pointed out the it makes sese to think of evolved biological systems (brains) as instances of analogue computers. Another interesting point from the session is the distinction between the digital (Von Neumann) computers and alternatives such as “physical” or “analog” computation, which would be picked up on in the next session.
After taking a break from the topic, our July 15 meeting featured an alternative viewpoint on pancomputationalism. This was made manifest in a shorter discussion on physical computation, with views from Tomasso Toffoli and Stephen Wolfram. We covered Toffoli’s paper “Action, or the funcgability of computation”, which connects physical entropy, information, action, and the amount of computation performed by a system. This paper is of great interest to the group in light of our work and discussions on 4E (embodied, embedded, enactive, and extended) cognition [3]. Toffoli makes some provocative arguments herein, including the notion of computation as “units of action”. A concrete example of this is a 10-speed bicycle, which is not only not a conventional computer, but also has linkages to perception and action. Amanda Nelson found the notion of transformation from one unit into another particularly salient to the distinction between analogue and digital computation. The physical basis of all forms of computation can also be better defined by revisiting “A New Kind of Science” [4], in which Wolfram sketches out the essential components and analogies of a computational system with a physical substrate. We can then compare some of the more abstract aspects of a physical computer with neural systems. This is particularly relevant to engineered systems that include select components of biological networks.
The next session followed up on computation in natural systems as well as Wolfram’s notion of universality, particularly in terms of computational models. In particular, Wolfram argues that cellular automata models can characterize universality, which is related to pancomputationalism. Universality suggests that any one computational model can capture system behavior that can be applied across a wide variety of domains. In this sense, context is not important. Rule 30 produces an output that resembles pattern formation in biological phenotypes (the shell of snail species Conus textile), but can also be used as a pseudo-random number generator [5]. In “A Framework for Universality in Physics, Computer Science, and Beyond”, this perspective is extended to understand the connections between computation defined by the Turing machine and a class of model called Spin Models. This provides a framework for universality that is useful form defining computation across the various levels of neural systems, but also gives rise to understanding what is uncomputable. This sessions natural system examples featured computation among bacterial colonies embedded in a colloidal substrate along with computation in granular matter itself. The latter is an example of non-silicon based polycomputation [6].
After talking a more extended break from the topic, we returned to this discussion four weeks later (August 19). Our sixth (VI) session occurred in our August 19 meeting, and covered three topics: physical computation and topology, morphological computation, and RNA computing/Molecular Biology as universal computer.
We have discussed category theory before in our discussions on Symbolic Systems and Causality. In this section, we revisited the role of category theory, but this time with reference to Physical Computation. John Carlos Baez and Mike Stay give a tour of category theory’s role in computation via topology. The idea is that category theory forms analogies with computation, which can be expressed on a topological surface/space.
Mapping category theory operators to a topological description.
We aslo covered the role of Morphological Computation by reviewing three papers on this form of physical computation that intersects with digital computational representations. Morphological Computation is the role of the body in the notion of “cognition is computation”. One idea that is critiqued with in these papers is offloading from the brain to the body. Offloading is moving computational capacity from the central nervous system to the periphery. If you grab a ball with your hand, you recognize and send commands to grasp the ball, but you must grasp and otherwise manipulate the object to fully compute the object. Thus, this capacity is said to be offloaded to the hand or peripheral nervous system.
Interestingly, offloading and embodiment are integral parts of 4E (Embodied, Embedded, Enactive, and Externalized) Cognition, which itself critiques the brain as computation idea. But as an analytical tool, morphological computation is much more utilitarian than Cognitive Science theory, and is concerned with how the robotic bodies and other mechanical systems interact with an intelligent controller. In non-embodied robotics, body dynamics is treated as noise. But in morphological computation, body dynamics play an integral role in the intelligent system and contribute to a dynamical system.
The three insights from our morphological computational discussion.
While these papers do not get too deeply into the role of pancomputation in Morphological Computation, it is implicitly stated and plays a central role in our last topic: RNA computing and Molecular Biology. For more information, see this talk on YouTube and the paper below. Basically, while the pancomputationalism perspective is missing from biology, the structure and potential function of DNA and RNA provide a route to phycial computation.
Over the past three years, the Saturday Morning NeuroSim group has met weekly on Saturdays (mornings in North America). The Saturday Morning format continues in the tradition of Saturday Morning Physics and covers a wide variety of topics.
Our discussion thread on causality begins withCausality and Circles on May 13. From a Mastodon post by Yohan John, we considered how spatialized diagrams are confused with temporal sequences in a feedback loop. We also covered three papers in this session.
Our conversation continued after the last week of Neuromatch Academy, when the NMA curriculum featured causal networks. Our July 29 meeting featured a collection of references on Bayesianism, Probabilistic Graphical Models, methods of integration, time-series applications, and more. Some core readings are given below.
Stanford Encyclopedia of Philosophy: causal models. This article takes an epistemological approach and provides us with a baseline for structural equation model, graphical probabilistic models, and other statistical formulations of causal relationships.
Daphne Koller’s Probabilistic Graphical Models course. Hosted on Stanford University’s Open Classroom platform, this course includes units on representation, inference, learning, and causation. The causation unit covers decision theory, utility functions, influence diagrams, and the notion of perfect information.
Pearl, J. (2000). Causality. Cambridge Press, Cambridge, UK. This classic book by Judea Pearl builds from a theory of inferred causation, starting at causal diagrams, and continuing through direct effects, indirect effects, confounds, counterfactuals, bounding effects, and probabilities. The book also covers structural models, decision analysis, and Simpson’s Paradox as the basis for methods for detecting causal relationships.
Heckman, J.J. (2005). The Scientific Model of Causality. Sociological Methodology, 35, 1–97. Causality from an econometrics point-of-view. Counterfactuals are a set of possible outcomes generated by determinants. A causal effect is defined by the change in the manipulated factor where amongst a set of factors, in a situation where all but one is held constant.
Pearl, J. (2001). Bayesianism and causality, or, why I am only a half-Bayesian. In “Foundations of Bayesianism”, pgs. 19–36. Kluwer Press.
Methods of Interaction: networks and non-directional graphs, as opposed to directed acyclic graphs (DAGs), require a different set of considerations. The methods below cover highly interacting systems like graphs and how change over time can be properly interpreted as causal.
Time-series using Granger Causality: the first two references apply Granger Causality to time-series datasets. In such cases, the datapoints are dependent with respect to time. Given two time-series x and y, x is the cause of y if x predicts y (lagged with respect to x over a certain time interval) given x and prior values of y. This is in comparison with simply predicting the current value of y given previous values of y, which would be the counterfactual case.
The final paper in the group (Stokes and Purdon) critiques Granger Causality from a Neuroscience perspective.
The third session (August 5) was a focus on causality specifically as it is treated in Neuroscience. This session followed up on a Twitter debate by Kording Lab and Earl Miller about the role of causality in neuroscience. The consensus to the question “Why is Neuroscience so into causality?” was that it provides a means to identify mechanisms for function. Causality in neuroscience differs from philosophical discussions about causality in that Neuroscience must infer causality from data, while philosophers (and statisticians) do the work of proving causality.
One interesting point from Kording Lab is that there is a difference between proximate causes and ultimate causes. In some fields, causality is obvious and so causal methods are not always necessary. But Neuroscience is partially about the behavioral substrate, and so we can turn to Niko Tinbergen’s four questions. The four questions concern 1) how a trait arose in development (proximate, dynamic), 2) how a trait arose in evolution (ultimate, dynamic), 3) what is the mechanism or structure of a trait (proximate, static), and 4) what is the adaptive value or function of a trait (ultimate, static).
You can read more about Tinbergen’s four questions and their causal implications in the following papers.
The fourth session (August 19) picks up on a point covered in the second session, namely how causality can be inferred from network data. This covers related ideas of transitivity, weak interactions, and anti-causal models. Papers for this session include networks in ecology, anticipative and non-anticipative control theory, and anti-causal systems.
Typology of causal models for past, present, and future events.
Finally, some fields (cell and molecular biology) have working models of causation that while useful, are not particularly illuminating. In the cell and molecular biology example, the traditional model of necessity and sufficiency (a mechanism being necessary but not sufficient) can be criticized for not being complete with respect to incorporating counterfactuals or multiple potential causes. See this paper for more information: