October 24, 2016

Open Access Week: How Am I Doing, Altmetrics?

This is one of two posts in celebration of Open Access week (on Twitter: #oaweek, #open access, #OpenScience). To kick things off, we will go through an informal evaluation of Altmetrics and other indicators of research paper usership.

In this post, I will discuss some quick investigations I did using the Altmetric metric system (known visually as the number within the multicolored donut). Altmetrics go beyond academic metrics based solely on academic journal prestige or number of formal citations in academic papers (e.g. h-index). In this post, I will discuss how these metrics might be used to help better understand the full impact on one's work.


The Altmetric donut and its diversity of input sources. The Altmetric score is based on how many interactions your content received from each source medium.

The first exercise I did was to acquire Altmetric donuts for journal articles and preprints for which I did not have such data. This includes venues such as arXivStem Cells and Development, and Principles of Cloning II, which do not feature Altmetric donuts on their pages. Interestingly, the bioRxiv preprint server does, in addition to tracking .pdf download and abstract view counts.



Example of an Altmetric donut in context (top) and readership stats (bottom) from a recent Biology paper for which I am an author. 

Retrieving a donut and data summary from the Altmetric database is easy. You embed a few line of code (see inset below) into an HTML document, and the donut and score appear where desired. While the donut is most useful for augmenting a publication list, in this case I simply created a test document for collating data from across many papers.

// Formal journal article citation
Alicea, B., Murthy, S., Keaton, S.A., Cobbett, P., Cibelli, J.B., and Suhr, S.T.  Defining phenotypic respecification diversity using multiple cell lines and reprogramming regimens. Stem Cells and Development, 22(19), 2641-2654 (2013).
// Code for donut and database call; possible data subclasses include:
// data-arxiv-id
// data-handle
// data-doi

In context, the donut can provide useful information about how a given paper is diffusing through the academic internet. In the case of the Stem Cells and Development paper (see code), the paper has an Altmetric score of 9. While the Journal website does not have Altmetric or download data, it does provide a doi identifier and select forward citations.


Examples of the Altmetric database entry (top) and the Journal website (bottom) for the Stem Cells and Development paper.

Similar data exist for a follow-up paper to the Stem Cells and Development paper -- in this case, a preprint involving a specialized quantitative analysis (based on Signal Detection Theory) of the same data. For this paper, we have an arXiv identifier, which provides us with a donut and statistics on the relative popularity of the paper based on age and other similar documents in the Altmetric database.

A typical arXiv article page, in this case for an arXiv preprint related to the Stem Cells and Development paper.

This arXiv preprint comes with code for the analysis, which is posted to Github.

For this particular paper, there is an associated Github repository. Even for preprint repositories with Altmetric and readership data (such as bioRxiv), the integration of Github materials is rather poor, particularly in generating an Altmetric. Alternately, there is an opportunity for Github to This is an area for which user statistics linked back to the original paper would be appreciated. 

Altmetrics for the same arXiv preprint. We can access data on the sources of the Altmetric score, as well as the attention score in the context of all other tracked documents in the Altmetrics database.

We can also integrate readership data across sources to come up with a picture of how our academic work is being shared, consumed, and diffused. In this example, I will show how data from a blog analytics engine and Altmetric data can be combined. Research blogs are an up-and-coming area of research in Altmetric statistics capture. I have taken two blogrolls (Carnival of Evolution #46 and Carnival of Evolution #70), for which citable versions were posted to Figshare immediately after going live. My blogging platform (Blogger) has readership stats but no Altmetrics, while Figshare has Altmetrics and readership stats for the Figshare version only.



Altmetric data for two blogrolls cross-posted to Figshare, which provides both a doi identifier and an Altmetric donut. There is also view and download information for the Figshare version, which may or may not be inclusive of people viewing such content on the blog site.

Let's look at the Figshare data first. Carnival #46 has an Altmetrics score of 10 with 188 views and 58 downloads. By contrast, Carnival #70 has an Altmetrics score of 6 with 331 views and 82 downloads. Clearly, there is some variation in direct engagement between the two datasets that is proportional to the score.


Readership statistics for Carnival of Evolution #46 (top) and Carnival of Evolution 
#70 (bottom). Blog analytics only provides the number of "reads" on the home site since publication.

There is also little relationship between the number of Blogger reads and the Altmetric score (as the Altmetric score does not directly capture this number). Carnival #46 has 7928 reads over roughly 4 years and 7 months. Carnival #70 has 1602 reads over roughly 2 years and 7 months. 

Even in cases where no Altmetric donut can be generated (such as for book chapters), there are still ways to evaluate an article's reach. In the case of Academia.edu, a new feature has been added that allows people to leave a comment when they interact with a document. This is a more qualitative assessment of engagement, but also provides authors an idea of whether or not "reads" or "views" translate into more than just a passing glance.

Two consumers of a book chapter took time to express their gratitude. Other reasons can be quite interesting as well, particularly when they have to do with educational purposes.

Hope you have enjoyed this exercise. It is not meant to be an exhaustive discussion of the Altmetric evaluation system, nor is it the limit of what can be done with Altmetrics and other tools for tracking you work. While there is clearly more technical work to be done on this front, tools such as Altmetric APIs are available. The biggest challenge is to building a social economy based on a variety of research outputs. The field is moving quite rapidly, so what I have shown here is likely to be just the beginning. 

No comments:

Post a Comment

Printfriendly